
Superfamily phenomena and motifs of networks
induced from time series
Xiaoke Xu, Jie Zhang, and Michael Small1

Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Edited by Shalev Itzkovitz, Weizmann Institute, Rehovot, Israel, and accepted by the Editorial Board October 20, 2008 (received for review July 1, 2008)

We introduce a transformation from time series to complex net-
works and then study the relative frequency of different sub-
graphs within that network. The distribution of subgraphs can be
used to distinguish between and to characterize different types of
continuous dynamics: periodic, chaotic, and periodic with noise.
Moreover, although the general types of dynamics generate net-
works belonging to the same superfamily of networks, specific
dynamical systems generate characteristic dynamics. When applied
to discrete (map-like) data this technique distinguishes chaotic
maps, hyperchaotic maps, and noise data.

chaos � complex networks � subgraphs � embedding � dimension

Recently, a bridge between time series analysis and complex
networks has emerged (1, 2). Zhang and Small (1) first

introduced a transformation from pseudoperiodic (that is, os-
cillatory) time series to complex networks. By connecting those
nodes whose corresponding cycles are morphologically similar,
the dynamics of time series are encoded into the topology of the
corresponding network. Lacasa et al. (2) have proposed an
alternative algorithm to characterize periodic, random, and
fractal time series based on a similar philosophy. In their scheme,
successive scalar time series points are mapped to nodes of the
network with links between nodes for which the corresponding
points satisfy a condition on their relative magnitudes. By
exploiting the fundamental properties of time series that man-
ifest clearly in the corresponding networks, they are able to
distinguish between broad classes of dynamical systems.

Although both these schemes have been successfully applied
to generate complex networks from time series, the authors of
each algorithm have only explored the basic global statistics of
the network, such as degree distribution and average path length
(3, 4). We note that many networks that have the same basic
global properties, such as small-world character (5) and scale-free
distribution (6), may have wildly different local structures (7).
Conversely, networks with different global properties may demon-
strate similar local structures (8). Actually, mounting evidence
suggests that there might be strong ties between the global topo-
logical properties and key local patterns of networks (9).

In contrast to the degree distribution and the clustering
coefficient, the relative frequency of small subgraphs (or motifs)
can describe the local characteristics of complex networks (7).
The rank distributions of these motifs can reflect the local
structural properties and thus can be used to classify networks
(8). To understand the transformation mechanism between time
series and complex networks, it is important to make a compar-
ison between the local structures of networks from different time
series. Whereas the previous works (1, 2) focused on macro-
scopic properties of the dynamics evident in the network, we turn
our attention to the fine features of the dynamics that are only
evident on examination of the corresponding network.

In this article, we will discuss complex networks constructed
from a comprehensive battery of flow and map time series,
including periodic signals, periodic signals with noise, chaotic
signals, hyperchaotic signals, and white and fractal noise. We
focus more closely on the local properties of the networks and,
in particular, on the distribution of subgraphs within the net-

works. We examine the frequency of occurrence of various
subgraphs within the networks. Furthermore, we find that
different types of time series belong to different superfamilies
(that is, the set of networks with the same relative abundance of
the different subgraphs), and the fine local structures in the
complex network domain reflect the state recurrence properties
of these time series.

A subgraph of size N is the network formed by examining only
N specific nodes from the entire network. We only consider
subgraphs in which any 2 nodes are connected either directly or
indirectly. This leads to the sequence of hieroglyphs shown in
Fig. 1 where we have listed all of the 6 different undirected
subgraphs of size 4. By using the scheme described here, we
generate a complex network and observe the relative frequency
of different subgraphs for networks derived from time series
realizations of different dynamical systems.

Results
After building the complex network by using the simple scheme
described below, we calculate the number of occurrences of each
subgraph and rank them in descending order. The relative
frequency with which the different subgraphs occur is shown to
be a sensitive measure of the underlying dynamics. We find that
time series derived from different classes of dynamics have
distinct local characteristics and therefore different subgraph
ranks. Hence, data generated by different types of dynamical
systems belong to different superfamilies. As we shall see later,
our method can be applied not only to flow data, but also to data
from maps.

Flow Data. Fig. 2 plots the subgraph ranks of the complex network
constructed from different types of flow data, including periodic,
chaotic, and noisy periodic data, each with 104 points. Here, the
time delay � is determined by the mutual information method
(10) and a large embedding dimension (de � 10) is chosen to
reliably unfold the fine structure. We find that the different
complex networks from the same type of flow data (e.g.,
low-dimensional chaos) show the same rank ordering of sub-
graph frequencies. When this occurs we say that the networks
belong to the same superfamiliy and we call this behavior the
superfamily phenomenon of the time series. The observation can
be explained when referring to the original dynamics of these
distinct systems.

Time series derived from different dynamical systems dem-
onstrate distinct local structures in phase space. For a chaotic
signal, the reconstructed phase space will generally (although
neither necessarily nor sufficiently) generate fractal self-
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similarity and heterogeneity. Points on the attractor are sparse
in some areas, and dense in others. After being transformed into
the complex network domain, the points in dense regions are
found to have higher degrees than those in sparse regions. This

cannot be simply attributed to the fact that the density of points
is higher, but rather that the interconnection among them is
stronger. In a sparse region of phase space, the 4 nearest
neighbors are less likely to be mutual (i.e., they are nontransi-
tive), and therefore the corresponding node will only have 4
links. Conversely, the points in a dense region of phase space are
more likely to be mutual (fully transitive) and therefore have a
higher degree. In comparison, periodic flow signals show more
regular local structures and a more homogeneous distribution of
points on the attractive regions of phase space. Periodic flow
signals with different noise levels produce more random struc-
tures and hence the region of phase space that they occupy
becomes thicker (high dimensional or perhaps more diffuse)
than purely periodic flow data.

Note that the distinction among periodic, chaotic, and periodic
noisy flow data can be described with reference to the relative
frequencies of 2 particular motifs (D and F). The rank of motif
D is increased but motif F occurs less frequently from Fig. 2 A
(periodic) to Fig. 2B (chaotic) and further to Fig. 2C (noisy
periodic). This is essentially due to the heterogeneity of the
attractor and related to the intrinsic dimension of the system.
Motif D will generally occur frequently if it is likely that node w
is close to x, y, and z, but x, y, and z are not close to each other
(for any 4 nodes w, x, y, and z forming a single motif). Conversely,
motif F will occur more frequently if w is close to x, y, and z only
when x, y, and z are also close to one another. As we would
expect, the former structure D is more likely to appear only in
higher dimensions, or when the distribution of points is heter-
ogeneous; whereas F will occur more often when the points are
evenly distributed in a low-dimensional (that is, linear or planar)
attractor.

We assert that the motif F is more common for stable flow
data, and less common for transitive dynamics because of the
distribution of embedded points within phase space. Recall that
for strictly periodic flow the points will be evenly distributed and,
therefore, the strong mutual coupling implied by motif F will be
common. For chaotic systems, the distribution is structured but
nonuniform (a consequence of the self-similar fractal structure
of points on the attractor). Hence, nontransitive coupling struc-
tures (such as motif D) will be more common. A careful
examination of Fig. 2 A and a comparison with Fig. 2B bears out
the above observation; not only through the increasing frequen-
cies of D and E, but also through the change of the relative
frequencies of D and F. That is, when the periodicity increases
(from period 2 up to period 8; see Fig. 2 A), D and E increase
because the attractor becomes more heterogeneous. Moreover,
as the dynamics cease to be periodic and transit to chaos (Fig.
2B), the order of occurrence of the 2 subgraphs (D and F)
changes too.

For periodic dynamics with significant noise (30 dB to 0 dB),
the distinction of subgraph ranks is more obvious in Fig. 2C. The
last 3 subgraphs (C, E, and F) occur less often when the noise
level increases. Adding noise to periodic dynamics increases the
dimension of the dynamics while retaining the homogeneity of
the distribution of points. This causes the relative frequency
of the nontransitive motif D to increase, whereas the frequency
of fully transitive motif F decreases further. Moreover, the
frequency with which motif C occurs decreases. This motif C will
occur if w and z are connected to x and y, but x and y are not
connected, so x and y must be close to both w and z, but not to
one another. This configuration can frequently occur only if the
distance between the points is irregular, i.e., d(w, z) �� d(x, y),
that is, the distribution of points on the attractor is heteroge-
neous. Again, this is reflected not only by the relative frequency
of the various subgraphs, but also by the increasing abundance
with which they occur as a function of noise levels. We have
repeated this analysis with a correlated noise contamination [an
AR(3) process sn � 0.8sn�1 � 0.5sn�2 � 0.6sn�3 � �n], and found
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Fig. 1. All subgraphs of size 4 in undirected networks. We arbitrarily label
these subgraphs A, B, C, D, E, and F as shown.
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Rossler flow (period=2, c=6)

Rossler flow (period=3, c=12)

Rossler flow (period=6, c=12.6)

Rossler flow (period=8, c=8.7)
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Rossler flow (chaotic, c=9)
Rossler flow (chaotic, c=18)
Lorenz flow (chaotic)
Chua circuit flow (chaotic)
Mackey−Glass flow (chaotic)

B

A B C D EF

10
3

10
4

10
5

10
6

F
re

q
u

en
ci

es
 o

f 
S

u
b

g
ra

p
h

s

 

Sine+WGN(30dB)

Sine+WGN(20dB)

Sine+WGN(10dB)

Sine+WGN(0dB)
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Fig. 2. Subgraph ranks of different types of time series. (A) Periodic flow
data. (B) Chaotic flow data. (C) Periodic flow data with white Gaussian noise.
Note that in B, the Mackey–Glass flow is a high-dimensional chaotic system
and does not follow the same subgraph rank ordering as the other systems in
this plot.
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the motif rank distribution [see supporting information (SI) Fig.
S1] to be identical to Fig. 2C. In the case of correlated noise, the
only distinction we observe is that the variation of frequency of
motif E with noise level is substantially reduced.

In addition to several low-dimensional chaotic f lows, Fig. 2B
also shows the result for a high-dimensional chaotic system (the
Mackey–Glass system). In this one system the rank ordering of
motifs is different from the low-dimensional chaotic f low cases.
The Mackey–Glass flow shows an increasing prevalence of less
ordered (connected) motifs (motif D vs. C and E vs. F) when
compared with examples of low-dimensional chaos. The motif
distribution is actually similar to that exhibited by noise-
contaminated periodic systems, and again this is due to the
relative high dimensionality of the test systems.

Map Data. We have also observed similar phenomena when we
apply this method to discrete map data. Fig. 3 depicts the
subgraph ranks of chaotic maps, hyperchaotic maps, and white
and fractal Gaussian noise where we again build the complex
network with 104 points. The time delay � is 1 and the embedding
dimension de is 5. We find that the chaotic logistic map, Henon
map, and Ikeda map have the same subgraph ranks. The

hyperchaotic generalized Henon map and folded-tower map
data have the same subgraph ranks and hence belong to 1
superfamily. White Gaussian noise and fractal Gaussian noise
(� � 0.1 and � � 0.9, generated by the method in ref. 11) belong
to another superfamily. Moreover, similar to the above flow
data, the frequency of occurrence of subgraph D also increases
and that of subgraph F decreases from chaos (Fig. 3A) to
hyperchaos (Fig. 3B) and finally to noise (Fig. 3C). Motif F will
appear more in the homogenous and low-dimensional chaotic
structure, whereas, as the data become hyperchaotic and high-
dimensional, motif D becomes more prominent.

Conclusions and Discussions
The complex networks, built by our single simple scheme, group
different periodic dynamics, chaos (one positive Lyapunov ex-
ponent), hyperchaos (multiple positive Lyapunov exponents),
random noise and noisy periodic signals into separate super-
families. That is, all of the same types of system exhibit one
particular relative frequency of subgraphs. For example, all of
the chaotic map systems tested exhibit the same ranks of relative
frequency of subgraphs. Moreover, within each superfamily, the
networks corresponding to time series from different specific
dynamical systems exhibit a unique fingerprint specific to that
system.

The results reported here were obtained from 104 data. For
maps we found that a minimum of 5,000 points is required to
obtain consistent results, for flow data 9,000 points are required.
However, in all cases the method we present assumes that the
underlying system is stationary. For time series from a nonsta-
tionary (nonautonomous or sufficiently high dimensional) sys-
tem the theoretical foundation required for time-delay embed-
ding is absent. Nonetheless, in such cases, this method may still
be useful as a tool for data analysis. For example, in the case of
a system undergoing abrupt parameter change one could imag-
ine that this method would yield disjoint network components.

Compared with the algorithm we present here, we note that
the method in ref. 1 does not require phase space reconstruction
to build the network, because the correlation coefficient (12) is
used to measure the distance between individual cycles (which
are taken as nodes in the network). Of course, the focus on cyclic
time series in ref. 1 is mainly motivated by the specific research
interests of those authors, and the extension of that scheme to
nonoscillatory signals is trivial. Comparatively, the mapping
mechanism in ref. 2 depends on the statistical persistence of the
time series. Two arbitrary points A(ta, ya) and B(tb, yb) will
become connected nodes, if any other data C (tc, yc) between
them (ta � tc � tb) fulfills:

yb � yc

tb � tc
�

yb � ya

tb � ta
[1]

This means that the linear interpolation between A and B should
be larger than the value of all intermediate points. Although this
method is simple, it is somewhat unclear what precise aspect of
the dynamics is being exploited. Moreover, application of this
method to chaotic data remains untested (2).

Distinct from our current algorithm, the complex networks in
refs. 1 and 2 are built directly from the time domain, and
therefore the construction algorithms have the advantage of
being simple: essentially, the embedding step is avoided. The
reason why we choose to perform an embedding here is that the
basic unit is now points rather than cycles [compared with
Zhang’s method (1)] and that a phase space reconstruction
allows for a deeper understanding of the topology of the data by
recovering the inherent structure of the data, possibly high
dimensional. For a high-dimensional system, such as various
hyperchaotic systems, it is difficult to get enough information
merely from 1 dimension (2). An important advantage of using
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Fig. 3. Subgraph ranks of different types of time series: chaotic map data (A),
hyperchaotic map data (B), and noise data (C).
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a phase space reconstruction is that if the embedding is chosen
appropriately, the topological distribution of the set of points in
phase space will accurately reflect the underlying dynamics of
the original system. Therefore, the network inferred from that
phase space reconstruction can be related directly back to the
evolution operator of the underlying dynamical system. More-
over, connecting the fixed number of neighbors according to
their distance essentially reflects the local recurrence features of
the time series (13). For example, random noise has no state
recurrence, periodic signals show trivial recurrence, and chaotic
data demonstrate nonperiodic state recurrence related to a
stretching and squeezing mechanism (14). The subgraph pat-
terns revealed by the local (neighborhood) configuration of
nodes essentially relate the state recurrence mechanisms of
different systems with the local structures of the complex
network, and therefore provide more detailed information than
traditional measures (15, 16). Moreover, the recurrence infor-
mation present in the network is intimately related to the
distribution of unstable periodic orbits (UPOs). Indeed, in ref.
1 we saw that the cycles close to the low-order UPOs were
located at peaks of the probability density of degree distribution.
In the current method, a similar, but more subtle phenomenon
occurs. Certainly, the presence or absence of a dense collection
of UPOs strongly influences the result, and the motif distribu-
tions highlight this fact. However, a more subtle effect is hidden
in the temporal organisation of motifs within the network. By
emphasizing the commonality of motif distribution for data
originating from the same general type of dynamical system, we
have suppressed these more subtle characteristics.

In fact the subgraph ranks of time series characterizes the
dynamics on a microscopic scale, i.e., it reflects the local
properties of time series in phase space. The total frequency of
subgraphs is a macroscopic measure similar to entropy (17),
which reflects the global statistical characteristics of the time
series. We have explored the overall frequencies of all map
subgraphs of size 4, which we also find to be directly related to
the distinct dynamics of the data. As can be seen in Fig. 4,
random noise has the largest number of subgraphs. Next come
hyperchaotic and chaotic signals. Note that motif D only con-
sumes 3 links from the overall network degree but the motif F
requires 6 links. All of the complex networks from time series
have the same nodes and average degrees, so the different ranks
of subgraphs will give different corresponding total frequencies

of subgraphs. Whereas the points from a deterministic process
(here, we consider chaos) will typically be confined to a low-
dimensional manifold, the fully transitive motif F is more
common than the nontransitive motif D, which leads to the lower
total frequency of these subgraphs. For random noise, the
corresponding phase space points exhibit a high-dimensional
structure that naturally gives rise to more of motif D but less of
motif F, which leads to the higher total frequency of smaller (in
terms of degree) subgraphs. The observation that different types
of data exhibit different total frequencies of subgraphs is con-
sistent with entropy measures (17) and complexity statistics (18),
which indicates that our method links the macroscopic property
of time series and microscopic properties of complex networks.

Finally, we note that there is a strong similarity between the
method of this article (and also ref. 1, and even ref. 2) and the
idea of recurrence plots (19, 20). However, the usual construc-
tion used in the 2 methods is different. In this article, we examine
the few closest neighbors; a recurrence plot usually is con-
structed with proximity measured against some fixed threshold.
Although it is possible to view the recurrence plot as an
adjacency matrix of a complex network, to do so would suppress
the most important feature of recurrence plots—temporal or-
dering. Conversely, the most powerful features in complex
network analysis are properties of paths between nodes—that is,
chains of connected nodes (and not simply neighboring dynamical
strands). These are not evident from any of the usual recurrence
measures. For example, it is not clear how to extract motifs from a
recurrence plot. At present it is more appropriate to view both
methods as complementary tools to analyze different aspects of
topological information extracted from the time series.

Methods
The scheme we employ to generate complex networks is described in this
section. The dynamical systems and the process of generating time series data
are described in SI Text. From a given time series we generate a complex
network representation as follows.

Step 1. Obtain the time series of a given length.
Step 2. Embed this time series in an appropriate phase space (21), and take

each phase space point as a node in the network.
Step 3. Select a fixed number (in what follows, we choose 4) of nearest

neighbors for each point (node) and connect each point with its neighbors to
form a complex network.

Eligible neighbors should have a temporal separation greater than the
mean period of the data, and thereby do not inhabit the same ‘‘strand’’ (13).
At each step, each node will be assigned 4 new nearest neighbors irrespective
of whether it has been connected before. Nonetheless, we do not allow
multiple links between 2 nodes. Hence, on average, each node will have 8 links
with 8 other nodes (directionality of links is not considered), and the complex
networks from different time series will have the same size and average
degrees (�k� � 8). Because we can ensure this uniformity between the net-
works we generate for different time series, we do not need to adopt
randomized networks (7) and a significance profile (8) when comparing these
networks. Here, selecting neighbors with a fixed number is more flexible than
simply setting a distance threshold. By doing this we are able to enforce a
threshold adaptively according to the point density in different regions of
phase space. This could be of great advantage for the analysis of chaotic data
that always show similar geometry at different scales in phase space. None-
theless, the choice of this number of neighbors (here 4) is important. We find
that for both flows and maps the results are robust across a range of values.
For maps a value in the range 3–8 produces identical results. For the flows
described above, 3–4 works best.
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